10 research outputs found

    The NTD Nanoscope: potential applications and implementations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nanopore transduction detection (NTD) offers prospects for a number of highly sensitive and discriminative applications, including: (i) single nucleotide polymorphism (SNP) detection; (ii) targeted DNA re-sequencing; (iii) protein isoform assaying; and (iv) biosensing via antibody or aptamer coupled molecules. Nanopore event transduction involves single-molecule biophysics, engineered information flows, and nanopore cheminformatics. The NTD Nanoscope has seen limited use in the scientific community, however, due to lack of information about potential applications, and lack of availability for the device itself. Meta Logos Inc. is developing both pre-packaged device platforms and component-level (unassembled) kit platforms (the latter described here). In both cases a lipid bi-layer workstation is first established, then augmentations and operational protocols are provided to have a nanopore transduction detector. In this paper we provide an overview of the NTD Nanoscope applications and implementations. The NTD Nanoscope Kit, in particular, is a component-level reproduction of the standard NTD device used in previous research papers.</p> <p>Results</p> <p>The NTD Nanoscope method is shown to functionalize a single nanopore with a channel current modulator that is designed to transduce events, such as binding to a specific target. To expedite set-up in new lab settings, the calibration and troubleshooting for the NTD Nanoscope kit components and signal processing software, the NTD Nanoscope Kit, is designed to include a set of test buffers and control molecules based on experiments described in previous NTD papers (the model systems briefly described in what follows). The description of the Server-interfacing for advanced signal processing support is also briefly mentioned.</p> <p>Conclusions</p> <p>SNP assaying, SNP discovery, DNA sequencing and RNA-seq methods are typically limited by the accuracy of the error rate of the enzymes involved, such as methods involving the polymerase chain reaction (PCR) enzyme. The NTD Nanoscope offers a means to obtain higher accuracy as it is a single-molecule method that does not inherently involve use of enzymes, using a functionalized nanopore instead.</p

    A novel, fast, HMM-with-Duration implementation – for application with a new, pattern recognition informed, nanopore detector

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hidden Markov Models (HMMs) provide an excellent means for structure identification and feature extraction on stochastic sequential data. An HMM-with-Duration (HMMwD) is an HMM that can also exactly model the hidden-label length (recurrence) distributions – while the regular HMM will impose a best-fit geometric distribution in its modeling/representation.</p> <p>Results</p> <p>A Novel, Fast, HMM-with-Duration (HMMwD) Implementation is presented, and experimental results are shown that demonstrate its performance on two-state synthetic data designed to model Nanopore Detector Data. The HMMwD experimental results are compared to (i) the ideal model and to (ii) the conventional HMM. Its accuracy is clearly an improvement over the standard HMM, and matches that of the ideal solution in many cases where the standard HMM does not. Computationally, the new HMMwD has all the speed advantages of the conventional (simpler) HMM implementation. In preliminary work shown here, HMM feature extraction is then used to establish the first pattern recognition-informed (PRI) sampling control of a Nanopore Detector Device (on a "live" data-stream).</p> <p>Conclusion</p> <p>The improved accuracy of the new HMMwD implementation, at the same order of computational cost as the standard HMM, is an important augmentation for applications in gene structure identification and channel current analysis, especially PRI sampling control, for example, where speed is essential. The PRI experiment was designed to inherit the high accuracy of the well characterized and distinctive blockades of the DNA hairpin molecules used as controls (or blockade "test-probes"). For this test set, the accuracy inherited is 99.9%.</p

    Implementing EM and Viterbi algorithms for Hidden Markov Model in linear memory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Baum-Welch learning procedure for Hidden Markov Models (HMMs) provides a powerful tool for tailoring HMM topologies to data for use in knowledge discovery and clustering. A linear memory procedure recently proposed by <it>Miklós, I. and Meyer, I.M. </it>describes a memory sparse version of the Baum-Welch algorithm with modifications to the original probabilistic table topologies to make memory use independent of sequence length (and linearly dependent on state number). The original description of the technique has some errors that we amend. We then compare the corrected implementation on a variety of data sets with conventional and checkpointing implementations.</p> <p>Results</p> <p>We provide a correct recurrence relation for the emission parameter estimate and extend it to parameter estimates of the Normal distribution. To accelerate estimation of the prior state probabilities, and decrease memory use, we reverse the originally proposed forward sweep. We describe different scaling strategies necessary in all real implementations of the algorithm to prevent underflow. In this paper we also describe our approach to a linear memory implementation of the Viterbi decoding algorithm (with linearity in the sequence length, while memory use is approximately independent of state number). We demonstrate the use of the linear memory implementation on an extended Duration Hidden Markov Model (DHMM) and on an HMM with a spike detection topology. Comparing the various implementations of the Baum-Welch procedure we find that the checkpointing algorithm produces the best overall tradeoff between memory use and speed. In cases where sequence length is very large (for Baum-Welch), or state number is very large (for Viterbi), the linear memory methods outlined may offer some utility.</p> <p>Conclusion</p> <p>Our performance-optimized Java implementations of Baum-Welch algorithm are available at <url>http://logos.cs.uno.edu/~achurban</url>. The described method and implementations will aid sequence alignment, gene structure prediction, HMM profile training, nanopore ionic flow blockades analysis and many other domains that require efficient HMM training with EM.</p

    Hamiltonian thermodynamics of a Lovelock black hole

    Get PDF
    We consider the Hamiltonian dynamics and thermodynamics of spherically symmetric spacetimes within a one-parameter family of five-dimensional Lovelock theories. We adopt boundary conditions that make every classical solution part of a black hole exterior, with the spacelike hypersurfaces extending from the horizon bifurcation three-sphere to a timelike boundary with fixed intrinsic metric. The constraints are simplified by a Kucha\v{r}-type canonical transformation, and the theory is reduced to its true dynamical degrees of freedom. After quantization, the trace of the analytically continued Lorentzian time evolution operator is interpreted as the partition function of a thermodynamical canonical ensemble. Whenever the partition function is dominated by a Euclidean black hole solution, the entropy is given by the Lovelock analogue of the Bekenstein-Hawking entropy; in particular, in the low temperature limit the system exhibits a dominant classical solution that has no counterpart in Einstein's theory. The asymptotically flat space limit of the partition function does not exist. The results indicate qualitative robustness of the thermodynamics of five-dimensional Einstein theory upon the addition of a nontrivial Lovelock term.Comment: 22 pages, REVTeX v3.
    corecore